

Comparissons of SOT Testing Procedures for "LiquidFertilizers"

Fluid Fertilizer Foundation February 15-16, 2016 Scottsdale, Arizona

Dr. Michael Hojjatie
R&D Director

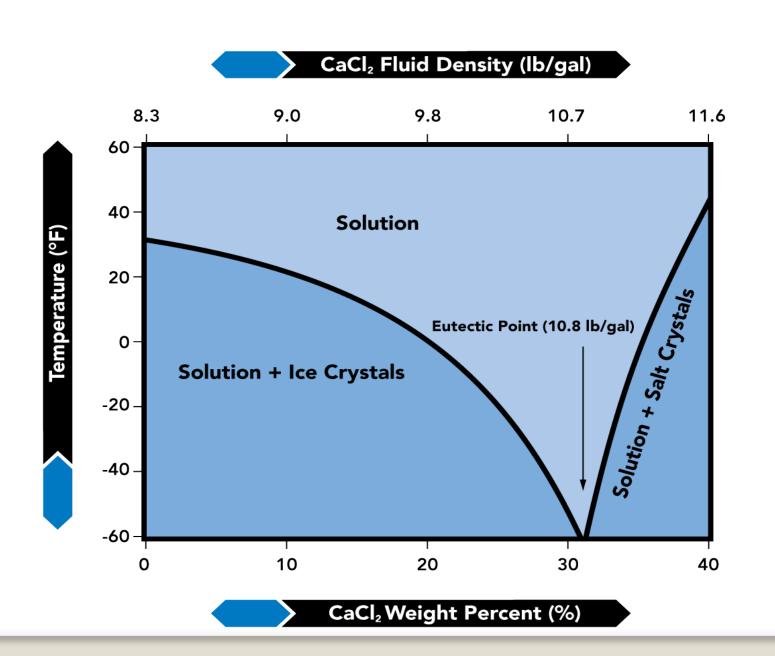
USA fertilizer market share by class.

Liquid Fertilizers

Fertilizer	Grade	
Triazone N Fertilizer	28-0-0	
Ammonium Thiosulfate	12-0-0-26S	
UAN-28	28-0-0	
UAN-30	30-0-0	
UAN-32	32-0-0	
Ammonium Polyphosphate	10-34-0	
Potassium Thiosulfate	0-0-25-17S	

Liquid Fertilizers

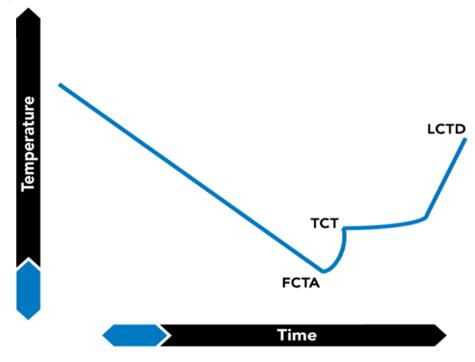
- Easier to prepare
- Easier to apply
- Applies easily to the irrigation lines
- Can be blended with other nutrients in one application
- Furthers 4R Crop Nutrition
- Disadvantage May salt out in cold temperatures

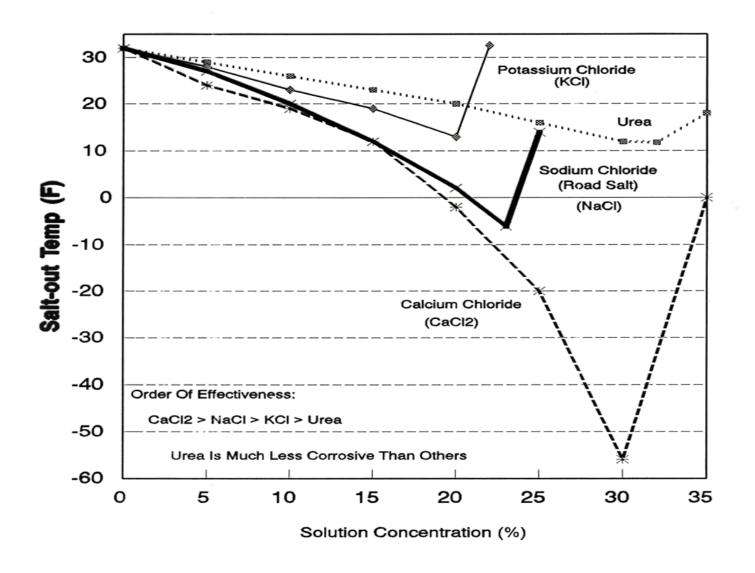


Crystallization Temperature:

The crystallization temperature is the temperature at which a solid phase begins to form, resulting in a mixture of solid particles and solution. These solids may be salt crystals or water crystals (ice).

Figure 1 shows a typical crystallization temperature curve for a Salt solution. Note that the left side of the curve slopes downward with increasing salt concentration levels. This side of the curve is labeled *Solution + Ice Crystals*. It represents the freezing point of the salt, where ice crystals would begin to form. The right side of the curve is labeled *Solution + Salt Crystals*. It represents the phase boundary of the salt, below which salt crystals begin to form. The minimum point where the two curves intersect is known as the *eutectic point*. It is the point at which the minimum crystallization temperature can be realized. In essence, it is the lowest temperature at which a solid free solution can exist.




Typical Crystallization curve

- FCTA = First Crystal to Appear
- TCT = True Crystallization Temperature (the formation of salt crystals generates a small amount of heat, which causes a slight rise in the solution's temperature)
- LCTD = Last Crystal to Dissolve

EFFECT OF SALTS ON FREEZING POINT

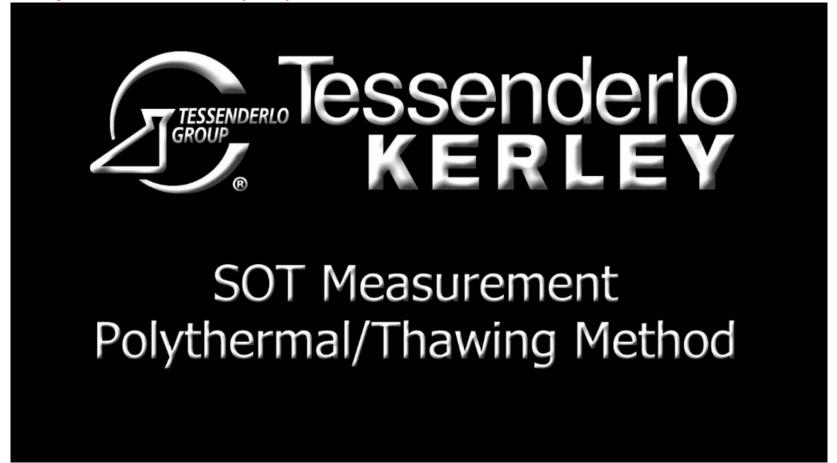
Fertilizer Solutions Salt-out is an issue in many environments and SOT should be known

- Warm water has ability to dissolve more salts than cold water
- Salt-out occurs when salt content exceeds solubility at a given product temperature
- Crystals form on tank walls as temperature cools
- Eventually salts accumulate at tank bottom
- Salts will re-dissolve with sufficient heat and recirculation

SOT Measurement Methods

- There are multiple methods used to measure SOT
 which makes product comparissons difficult
- Lack of consistency among methods and no standards:
 - 1. Dauncy & Still Optical Method, J. F. Luternauer, J. Agri. Food Chem. 1967, 15(3), 543-546
 - 2. Polythermal/Thawing Method, Kadam, et.al., Chem. Engineering Science, 1970, Vol 2, 2012, 10-19
 - 3. ASTM D97
 - 4. UAN (CF)

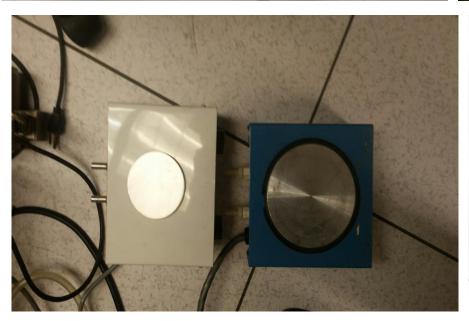
SOT Measurement Methods


1. Cooling/Thawing Method

SOT Measurement Methods

2. Poly thermal Method (TVA)

ASTM D97 POUR POINT


ASTM D97 Pour Point

CF-UAN (B. WHITE PROVIDED)

Salt Out Temperatures (SOT)

- We have tried SOT of a commonly used blend of ATS & UAN, namely 15-0-0-20S with two different in house methods:
- SOT of Ammonium Thiosulfate is 42° F
- SOT of UAN 32 is reported to be 32° F
- Accurate SOT measurement in critical

	-	anda	rlo		
Tessenderlo					
	KE	RLI			

derio	Source 1	Source 2	Source3
рН	6.95	7.2	7.76
Sg @ 20° F	1.35	1.351	1.344
%N	12.09	12.12	11.91
%ATS	57.63	57.03	57.35
%SO ₃	2.64	2.02	2.29
%Alkalinity as NH₄OH	1.12	0.84	1.1
SOT °C Polythermal Method	8.4 (47.1 °F)	7.3 (45 °F)	6.5 (43.7 °F)
SOT °C cooling/thawing	6 (42.8 °F)	7 (44.6 °F)	5 (41 °F)
15-0-0-20 (UAN 32)			
gm ATS	153.9	157	155.5
gm UAN 32	35.6	34.3	35.9
gm Water (DI)	10.5	8.7	8.6
SOT °C Polythermal Method	- 31.7 (-25.05 °F)	-33 (-27.4 °F)	-32 (-25.5 °F)
SOT °C cooling/thawing	-16.5 (2.3 °F)	-13.5 (7.7 °F)	-15 (5 ∘F)
15-0-0-20 (UAN 28)			
gm ATS	153.9	157	155.5
gm UAN 32	40.7	39.2	41
gm Water (DI)	5.4	3.8	3.5
SOT °C Polythermal Method	-33 (-27.4 °F)	-32.7 (-26.86 °F)	-32 (-25.5 °F)
SOT °C Cooling/thawing	-17 (1.4 ∘F)	-13 (8.6 ∘F)	-16 (3.2 ∘F)

SOT MEASUREMENT METHOD

NEEDS FOR UNIVERSAL/HARMONIZED METHOD?

